Int. J. Heat Mass Transfer. Vol 17, pp. 1337-1348. Pergamon Press 1974, Printed in Great Britain

Tw 3

Greek

&,

ﬂ s
é,
é!h 5
03,
AT,

MIXED CONVECTION IN AN ISOTHERMALLY HEATED
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Abstract—A theoretical investigation is made into the laminar flow of a large-Prandtl-number fluid

through an isothermally heated horizontal pipe. A detailed analytical solution is obtained which shows,

in leading approximation, that the fractional bulk-temperature rise is solely a function of (L/aR}(G/P*)'*.

The theoryis found to agree very well with available experimental results and to be a marked improvement
over existing empirical correlations.

NOMENCLATURE AT,, bulk-temperature rise;
pipe radius; &, = (2z/aR)P(G/P'3);
gravitational acceleration €2, = (aR/2PHP/GA)4,
(directed along ¢ = 0); €3, = (z/aR}G/P)'*;
pipe Grashof number, = gBATa’/v?; . = {a~r)/dp;
pipe length; 1 = (sin'/? ¢/g%;
local Nusselt number, = g,,a/(kAT); K, = yPY3;
Nusselt number averaged over ¢; s = v/W, (“viscous length™);
Nusselt number averaged over ¢ and z; B dynamic viscosity;
pressure; v, kinematic viscosity;
Prandtl number; ¢
local heat flux, = k(0T /0r)y=a; ¢, = j sin'?rde;
radial coordinate; 0
pipe Reynolds number, = aW,/v; p,  fluid density;
average of bulk temperatures at inlet and ®, angular (azimuthal) coordinate;
outlet; @, = 0‘w/ﬂa)0l14(An/AT)exp;
bulk (or “mixing cup”) temperature; pA = (a—71)/d;
uniform temperature at inlet; ¥, streamfunction.
wall temperature (uniform);
radial velocity component; Subscripts
iii;)ig?;‘)lf /;rf:iocxty, a, evaluated at T,;
’ B, buoyancy-induced;
_vfz\ G exp, experimental;
= 2\aR / PF®’ F, forced-flow-induced;
. . w, value at wall,
axial velocity component;
uniform inlet velocity (or bulk velocity); 1, INTRODUCTION
axial coordinate. THE PRESENT paper is a theoretical investigation of the
velocity and temperature development in an iso-
symbols thermally heated horizontal pipe. The analysis corre-
= 0-33206; spox:xds to the large-l?randtl-number limit of the
coefficient of thermal expansion; laminar, n?lxed_-conv'e Ctlf)n regime.
= J@2); Theorc?tlcal 1nve§t1gat{on of th.lS problem has been
= 5/P'3; systematically avoided in the literature due to the
= af(GPY'/*; *Presently, Upson Hall, Cornell University, Ithaca, New
=T,—To; York 14850, U.S.A.
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attendant complexities arising from the three-dimen-
sionality of the flow situation. Instead, all previous
analyses of the horizontal orientation have been con-
fined to the fully-developed region of the uniform-heat-
flux pipe. Notable examples are the perturbation-
expansion solutions of Morton 1], del Casal and Gill
[2], Mikesell [3] and Faris and Viskanta [4], the
boundary-layer analyses of Mikesell [3], Mori and
Futagami [5] and Siegwarth et al. [6], and the
numerical solutions of Siegwarth and Hanratty [7] and
Newell and Bergles [8]. Briefly, the perturbation—
expansion results apply to the flow regime in which G
is sufficiently small such that the natural convection is
a small perturbation upon the forced-flow situation; at
the other extreme, the boundary-layer analyses apply to
the regime in which G is sufficiently large such that the
structure of the flow is buoyancy-dominated and
characterized by a thermal boundary layer, of order
a/(GP)!"* in thickness, which surrounds a core region.
In all instances, the axial dependence of the flow
variables is degenerate, consisting solely of a linear drop
in the pressure and a linear rise in the bulk temperature.

As is shown in the present investigation, the develop-
ment of the velocity and temperature fields within an
isothermal horizontal pipe consists of a succession of
regions, proceeding in the axial direction: a “near
region”, where buoyancy is a small perturbation upon
the forced flow; an “intermediate region”, where natural
convection is dominant and the thermal boundary layer
is axially invariant, its thickness being of order
a/{GP)''* asabove;a “break-up region”, where the core
region interacts with the thermal boundary layer as the
bulk-temperature rise in the core becomes of order AT
and the natural-convection effect therefore diminishes;
a “far-region”, where the forced convection reappears
as the dominant transport mechanism and the fluid
temperature approaches 7T,, asymptotically in a Graetz-
like manner. Although the near- and intermediate
regions can be expected to exhibit similarities to the
above-mentioned perturbation- and boundary-layer
analyses, respectively, a significant difference is that
now, for given inlet conditions, a whole gamut of flow
regimes exist simultaneously along the pipe. (Of course,
such a situation also obtains in the uniform-heat-flux
case for which, however, the previous analyses have
been concerned only with the final, fully-developed
region which, as noted above, “degenerates” into the
Graetz problem in the isothermal-pipe case.) For
practical purposes, it is the breakup region which is of
primary interest since it is here that the bulk-
temperature rise becomes appreciable and, hence,
where comparison with existing experimental data can
be made.

Experimentally, the isothermal horizontal pipe has
been investigated for various large-Prandtl-number
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fluids. Notable examples are the studies by Kern and
Othmer [9] in three different oils, Oliver [10] in water,
ethyl alcohol, 80:20 glycerol-water and glycerol,
Brown and Thomas [11] in water, and Depew and
August [ 12] in water, ethyl alcohol and 80:20 glycerol-
water. Comparison of these experimental results with
the present theory is given in Section 3, where the
fractional rise in bulk temperature is plotted vs
(L/aR)(G/P*Y4, this latter quantity arising naturally
from the theory as being the controlling parameter for
large-P fluids. Agreement between the zeroth-order
theory (as P — o0) and the experimental data in water,
ethyl alcohol and 80:20 glycerol-water is found to be
good, the average deviation being approximately 6, 12
and 15 per cent, respectively. By accounting for higher-
order effects, the agreement is brought to within about
3, 8 and 10 per cent, respectively. The glycerol data,
which is largely forced-flow dominated (as intended by
Oliver) is still brought to within an average deviation
of = 20 per cent after higher-order “corrections” (rather
large in this case) are made. Lastly, the data of Kern
and Othmer show a systematic dependence upon the
pipe radius which is not explainable in terms of the
present theory but which is conjectured as being due to
thermal instabilities in the larger-sized pipes. In parti-
cular, the data in the largest-radius pipe shows an
average deviation of about 45 per cent below the theory
whereas, in the smallest pipe, the average deviation is
< 10 per cent for two of the three oils.

A detailed analysis of the problem under considera-
tion is given in Section 2. This is followed in Section 3
by a discussion which includes a detailed comparison
with the above experimental investigations.

2. ANALYSIS

The physical situation being investigated is one in
which a large-Prandtl-number fluid flows through an
isothermally heated, horizontal pipe of radius a and
temperature 7T,,. At pipe inlet, the fluid has a uniform
axial velocity profile, w = W, and temperature, T = Tp.
The flow is assumed to remain laminar, thereby re-
quiring that the pipe Reynolds number, R = W,a/v, be
< 10, On the other hand, the analysis assumes that the
unperturbed flow (i.e. with buoyancy omitted) exhibits
a boundary-layer structure during part of its develop-
ment, thereby requiring R Z 10%. (The major result of
the present investigation is not actually subject to this
latter constraint, as will become clear later.) The usual
Boussinesq approximation will be employed in hand-
ling buoyancy effects and viscous dissipation will be
neglected.

(a) The near region
If natural convection is neglected, it is well-known
that the velocity field is characterized by a boundary
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layer surrounding an inviscid core in the region

o)<

In leading approximation, the velocity boundary layer
is described by Blasius flow over a flat plate:
W

Up = e
or’ oz

iR < o). 2.1

Yr=WodF(y), wr= — 22
where F”(0) = 0-33206 = o. The well-known tempera-
ture distribution associated with the above flow is
given by:

Te= To+AT H{x}, H({x)= Aj'

X

o0

e 2dr (23)

where
A = (90/4Y 3 /T(}) = 0-33872.

Basing the buoyant force upon (2.3), in leading
approximation, it follows that the limiting equations of
motion for the buoyancy-induced field in the thermal
boundary layer are:

dvg 0u,,
24
a@qS or @4
2,
+g,BATH singg =0 (2.5)

52

with the radial force balance being hydrostatic (see
[13]). Hence, this leading buoyancy-induced motion
can be represented by

Yrg = Vpd, Fi(x)sing

Vg = lllm = VyF;(x)sin g, 26)
Ugy = i‘g’; = é;& Vo F cos¢
where F, is governed by
F'!=—-H F{0)=0=F{0)=F{x). 2.7
Numerical integration results in:
Fl(0) = 1-67115, Fi(o0) = 2-04010, (2.8)

In turn, ug convects Ty, thereby giving rise to Tj,
whick can be represented by

Ty = ¢ ATH, (k) cos ¢ 2.9
and is governed by
H! +§ K2H, —2uxH, = —F,H',
H,(0) =0 = Hy(0) 10)
which, upon numerical integration, results in
H{(0) = —0-21770. (2.1

1339

Second-order terms in the buoyancy-induced motion
evidently arise from T, . In turn, the resulting thermal
convection of Ty by uy,, and that of Ty, by vm and uy,,
induces Tg,. In partlcular

(2.12)
o)

Vs = & Vpdy Fa(k)sin ¢ cos ¢
Tyz = efAT[Hyy(x)+sin® §Hyz(x
and numerical integration of the governing equations
for Fy, Hy; and H,; (see [13]) results in:
F3(0) = —0-90642, F; = —2-08348
2(0) 0-906 2(00) } 213

H(0)= 005575, H;,(0)= —0-28494

Inparticular, then, the leading terms in the buoyancy-
induced heat transfer are given by

¢ (a—) ]

kAT

x [—00558 +0-2849sin? ]+ O(ed)}. (2.14)

Hence, integrated over ¢, the leading contribution is
0-0867e2kAT /Sy,

In order that the above be self-consistent, it is clearly
required thatg, < O(1),i.e.z/aR < O(P*$/GY*). Hence,
if G> O(PY?) it follows that natural convection be-
comes significant where z/aR < O(1) and the above
expansion is restricted to the region

1 z pis

On the other hand, if G < O(P'/®) then the axial flow
becomes fully developed at z/aR = O(1) with buoyancy
still being negligible. The subsequent development of
the thermal boundary layer is then within Poiseuille
flow—the Leveque problem, in leading approximation
—with the natural convection becoming significant
where z/aR = O{PY*/G**), In particular, then, since
the forced-flow-dominated temperature field is known
to become fully developed (ie. Ty~ Ty} where
z{aR = O(P), it follows that natural convection never
becomes important if G < O(P™?).

{2.15)

(b) The intermediate region

The results in (a) imply that if G > O(P'/?) then the
thermal boundary layer is buoyancy-dominated once
z/aR > O(PY/%/G'/?), Hence, proceeding in a manner
similar to that above but now with the forced flow
assumed negligible, the limiting ¢-momentum and
energy equations in the thermal boundary layer

become:
2

0%
0=v" 2+ gp(Ty~

P To)sin (2.16)
d d v T,

— 17

(ugaaqsw,,ar)n, s @)
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with up again being coupled to vy via the continuity
equation, (2.4), and the radial force balance again being
hydrostatic. Appropriate expansions for these buoy-
ancy-dominated quantities are therefore given by

\[/B = Vﬂéaf(é‘* ¢)’ TB = T()‘("ATE(C» (ﬁ)

Oy O _5¢fs__5sV of ¢ (218)
BT T TRy BT a6 4 Pog

with the non-dimensionalized governing equations
becoming

&Z +hsing =0 (2.19)
R RSP
subject to the conditions:
Jo,¢p=0= gjg(&@, ko, ¢) = 1;
7 (2.21)
Tl (20, ¢) = 0 = h(co, $).

As was shown by Acrivos {14] for an analogous
problem, (2.19)-(2.21) can be reduced to similarity form
(a consequence of P — co and the attendant neglect of
the inertial effect). An appropriate transformation is
given by

o sin'? ¢
— 173 R S
E= L sin*/ edt, n= i (2.22)
f((:’ ¢) - 53"4,{(7’)7 E(é’a ¢) = h(ﬂ)
which results in
fm+h — 0 h”.{..th/ = 0 f(O) 0= f’(0)5} (223)
hO)=1, f7(c0) = 0 = h(co).

The solution of (2.23) has the féllowing well-known
properties:
f7(0) = 1-16604, R'(0) = —0-50275

2.24
fm) ~ 1:02136n—0-73825 as }( )

7 — co.
In particular, the ¢-averaged heat flux is given by
1{* foT AT K{0) ["sin'/

Bl I 4 el d¢p = —k— KQ) w
T jo Or Jiea és 7w Jo

513’4
kAT
= 0-43526 —— (GP)M/*, (2.25)
a
(c) The near-intermediate region
The perturbation effect of the forced flow upon the
structure of (b) arises from ug(07T,/0r) with the limiting
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¢-momentum and energy equations being

0= (3 5 +gﬂTp1 sin ¢ (2.26)
a é 8 é ol
Ug @¢+u86 T + vﬂaﬁqf)+ o +up T
v g Tpl
— . {227
TP @227

If up is based upon Blasius flow, (2.2), then an appro-
priate representation of these first-order perturbation
quantities is given by

Y = &2 annﬁx(@ &)

69’]
2’ Upy

Trs = e;ATH# (L, ¢)
55 0%,

. (2.28)
=2 5%

vp1 = 62 Vg —;

where &,, which equals £ 3%, represents the ratio of uy
to ug in the thermal boundary layer of the present
region. The resulting governing equations are

P F,
ay; +#ysing =0 (2.29)
P, ?i a_;?q _g oF, oF, oh o4, ok
ar e oL ol op oL ¢ o oL
_%,,0h
=40 i (2.30)
# .
F100,¢) =0=——(0,¢) = #(0,¢)
L, .
= Yzl(oo, ¢) = #,(0, ¢). (231

Due to the form of the inhomogeneous forcing term
on the r.h.s. of (2.30), a similarity solution for #; and
#, is precluded. Hence, a Blasius-series solution is
appropriate and, since f and k are most simply
described in terms of n and £, the series will be taken in
n and £ rather than { and ¢. That is,

f}{{, ) = 53’%9.1(?19 &)= 53[4 Z 53::;291”{”)
0 ™0 (2.32)
(P =HnH = 2.-:0 EM A ).

Substitution into (2.29)—(2.30) and collection of terms in

like powers of ¢ results in (with b = (3/4)>/%):
0(&%):
Fib+Hio = 2 (2.33)
Hlo+3f Hlo+3F1oh = 2 an’h’
o(&*"?):
Fli{+#,=0
11 11 3a (2‘34)
G+ A Y Hy +3F N = @ﬂzh
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with the process continuing to all integral powers of
£312 For all n > 0, the associated boundary conditions
are:

9’1,.(0) 0 = #1,(0) = #1,0)
1n(00) = H#14(20). (2.35)
Numerical integration gives:
F1o(0) = 0:081096, 3#(0) = 0029579,
Fio(00) = 0-133333
(2.36)
F11(0) = 00072809, #7,(0) = 0-0023300,
F11(o0) = 0-014230.

Hence, in particular, the perturbation effect of the
forced flow in this regionis to decrease the heat transfer.

Due to the non-linear thermal-convection effect, it is
clear that the interaction between &, and #, gives rise
to smaller-order terms, of O(e3), and that, in fact, there
exists an infinite series in powers of ¢,. In particular, it
is found that (see [13]):

Fo(0) = 0033405,  3#30(0) = 00083467,
Fhola0) = 0073348 037
F3,(0) = 00036312, 5#%,(0) = 000045047, 37
F}y(00) = 0:0092663.

(d) The far-intermediate region

It is apparent that the axially-invariant structure of
the intermediate region cannot be sustained indefinitely
since eventually the rise in the bulk temperature must
become significant and interact with the thermal
boundary layer. In particular, a global energy-rate
balance based upon the intermediate-region structure
gives

AT

dT,
2Woc, — ~ 2mak —
praWoc, - na 5

from which it follows that AT, becomes of O(AT) where

z p34

That is, once z satisfies (2.38), the thermal boundary
layer is effectively developing within a z-dependent
external temperature field and, hence, must itself be
z-dependent. Therefore, the theory in (b) is restricted to

the region
P1/6 z P3/4
0 <—G”2> < R <0 (—Gl/“)'

A means of analyzing the effect of the bulk-tempera-
ture rise upon the thermal boundary layer is by forming
a perturbation expansion based upon the quantity

z [GY*
By

(2.38)

(2.39)

€3 (2.40)
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In particular, the limiting governing equations and
boundary conditions on u, v and T are the same as in
(b) provided “T,” is everywhere replaced by “7,”. Hence,
appropriate expansions in this far-intermediate region
are given by:

W= VstBésM Z &3 fu(m)
n=0 (2.41)

(T-T)=AT ¥ 23

where f, and h, are the same as f and h of (b).
Substitution of (2.41) into the limiting governing
equations and collection of terms in like powers of &;
results in (n > 0):

i+ Y faoihi=0

k=0

o +h,=0; (2.42)

subject to the four homogeneous boundary conditions,

Ja0) = 0= £(0) = f;/(c0) = hy(c0)  (2:43)

and a fifth condition, on h,(0), which is obtained
immediately below.
From the definition of T;, it follows that

z (2= oT
=; kl— adgd:z.
pra*Woc, Jo Jo or Joes

Hence, evaluating this integral on the basis of (2.41)
(i.e. neglecting the bulk-temperature rise of the near
region—an assumption which will be corrected for,
approximately, in Section 3), it follows that

T,(2)- Ty

T,—To=AT ¥ Gl

(2.44)
n=1
where
2 hy_1(0) ("sin'/3 ¢
C,=— P j de). (2.45)

Therefore, since the isothermal wall condition requires
that

Tw—To =AT Y &3h.(Q) (2.46)
n=0
it follows from (2.44) and (2.46) that
@) =1, h(0)=-C, (nz1). (247

Since C, is known once h,_ has been determined, it
follows that the h, can be obtained successively. In
particular, numerical integration of (2.42) subject to
(2.43) and (2.47) results in the following values for
n = 0 through 5:

+(0) = 116604, —0-76130, 0-33136,
—0-12019, 003924, —0:01195

h,(0) = —0-50275, 0-54706, —0-35717,
0-18137, —0-07894, 0-03093

(2.48)
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with the associated values of C, for n=1 through 6
given by:
C, = 0-87052, —0-47363, 020615,
- 007851, 002734, —0-00892.

(e} The far region

Since the buoyant effect is proportional to the
temperature variation within the fluid, itis clear that the
natural convection must diminish as (T, — T)/AT
becomes small. Hence, the forced convection must
eventually reappear as the dominant transport mech-
anism with the final asymptotic development of the
temperature field corresponding to that of the Graetz
problem.

That is, as z/(aR) becomes of O(P), (T,,— T)/AT
approaches zero exponentially fast as 4, e %i=@RP
where ; == 3657 is the first eigenvalue from the Graetz
problem and 4, is a constant whose value would be
extremely difficult to determine, being dependent upon
the far-intermediate region and subsequent develop-
ment, Qualitatively, however, since the natural con-
vection effectively annihilates itself where z/(aR) =
O(P¥*/G1%), it follows that the forced convection
should be significant in the region

p3i4 z
becoming the dominant (howbeit, weak} transport
mechanism towards the latter part of this region. Since
{GP)'/* appears as the ratio of the upper to lower bound
in (2.50), it seems reasonable to expect that A4, will be
mainly a function of (GP)"*—a monotonically de-
creasing function, at that (asis clear on a physical basis).

Since a detailed solution for this region would be
extremely complicated, it is indeed fortunate that such
a solution may be omitted without much loss since
(T~ T)/AT is uniformly small throughout this region.
That is, as far as the heat transfer is concerned, main
interest lies in determining where {T,,— T,)/AT first
becomes small, which corresponds identically with
where the natural convection destroys itself, namely in
the far-intermediate region.

(2.49)

(2.50)

3. DISCUSSION
Based upon the previous section it follows that if
G > O(P¥?) and the inlet velocity is uniform then the
local (in ¢ and z) Nusselt number in the near region,
{2.15), is given by

.\~ 12
N = pi3 (~;R~> {0‘3387—%—81(0'2177 cos ¢}

+&f(~00558 +0-2849 sin* )+ 0(e1)] (3.1)
whereas, in the intermediate region, {2.39),

173
N =GP -Si-i},-;r? [05027+ A +A2]  (32)
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where A, is the near-intermediate-region contribution,

Ay = 85{ — 002958 —0-002330 £32 + O(E3)} + 63 (3.3)
x { —0008347 — 00004505 &2 + O(E} + 0|

and A, that of the far-intermediate:

Ay = — 0547163 +035723 018143
+0:07894 &5 — 0030923 + 0(e).  (3.4)

These results are illustrated in Fig. 1 at ¢ = 0° and
G =10* P =10% and R = 400. Curves 0, 1, and 2 are
based upon the near-region theory, (3.1), with “0”
denoting the purely forced-flow result; curve ¢’ is the
zeroth-order result of the intermediate-region theory;
{3.2), with I"and 2’ corresponding to the retention of one
and two terms in A,;. The final sloping down of the
curve for large z/a is due to A,. It is seen that the
curves based upon (3.1} and (3.2) merge very well with
each other, the solid curve being the composite result
based upon graphical interpolation between the two. A
local minimum in N is apparent.

Averaged over ¢, the above reduce to:

L\ ~-1/2
N=p# <:§) [0-3387+0:0867 23+ O(e})] (3.5)
.

and

N = (GP)'*[0-4353 ~ 00287 5, ~ 00078 £2
+0(e})+08657A,]. (3.6)

These results are illustrated in Fig. 2 where N vs z/a
has been plotted for P = 10%, R = 400 and G = 10%,
10*, 105, Curve A is based upon the first term in (3.5)
and curves B upon the first in (3.6); also shown is the
O(e?) contribution from the near region and the con-
tribution, to O (g3), of the near-intermediate; curves (ii)
and {iii}) are based upon the retention of two and three
terms in A, respectively. As above, the curves are seen
to merge well, the solid curve being the composite
result based upon graphical interpolation.

Since main interest lies in determining the bulk-
temperature rise of the fluid, it would be desirable to
integrate the above result over z in order to obtain the
average Nusselt number for the entire pipe, N, which is
related to AT, by:

- aRP\ AT,

N= ( 2L )AT '
However, such a procedure would be complicated by
the necessity of obtaining an analytic expression for N
in the “interpolated” region in which neither (3.5) nor
{3.6) 1s applicable. Rather, the procedure below will be
to compare available data directly with the theory of the
far-intermediate region, since it is here that AT, /AT

first becomes appreciable. Higher-order corrections
will then be made upon the far-intermediate theory.

(3.7)
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| 2 4 10 20 40 100
z/a9

FiG. 1. Variation of local Nusselt number with zja at ¢ =0 and G = 10%, P = 10?,
R = 400.

1 10 102 10% 0%
z/a

F1G. 2. Variation of ¢-averaged Nusselt number with z/a for P = 10%, R = 400 and
G =103, 10%, 105, (“B;” corresponds to G = 10%))

MT Vol. 17, No. t1—E
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08

0-6

pd

I I

| I

J
0-004

0-04 0l o4

L/aRP

FiGg. 3. & vs L/(aRP). +: water (Oliver, D&A, B&T); A: ethyl alcohol

(Oliver, D&A); O: 80:20 glycerol-water (Oliver, D&A); V: glycerol (Oliver);

<J: transformer oil (K&O); [>: core oil (K&O); ¢ : cylinder oil (K&O).
Curve corresponds to Graetz solution.

FI1G. 4. @ vs¢; (evaluated at z = L). Symbols have same meaning as in
Fig. 3. Solid curve based upon first six terms of (2.44).

The only pertinent experimental investigations ap-
pear to have been those of Kern and Othmer [9],
Oliver [10], Brown and Thomas [11] and Depew and
August [12]. For reference purposes, the operating
ranges of these experiments are indicated in Table 1.
Every fourth data point of these investigations is shown
in Fig. 3 in terms of

0-14 AT
=" el
ua AT Cpr

vs L/(aRP). [ A standard procedure has been employed
in Figs. 3-4 whereby all fluid properties are evaluated
at the average bulk temperature, T,, and the measured

AT,/AT is multiplied by the above viscosity-ratio
factor.] The indicated curve in Fig. 3 corresponds to
the Graetz solution. Clearly, with the exception of the
glycerol and some of the 80:20 glycerol-water results,
the data is systematically well above the forced-flow
theory, suggesting the presence of an additional trans-
port mechanism,

On the basis of the present theory, ® has been
plotted vs &3 (with z = L) in Fig. 4, wherein the solid
curve is based upon the first six terms in (2.44). It is seen
that all the water data (based upon three separate
investigations) correlate very well with ¢; and are in
good agreement with the solid curve. On the basis of the
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trend in this water data, the theoretical curve has been
extrapolated (dashed) and can be represented by

® = 0:543+0-315(e3 — 1) —0-132(e5 — 1)*
+0:028(e3 — 1)°.

for 1 € &3 < 2-5. The ethyl-alcohol data are also seen
to correlate very well with 5 although they are only in
fair agreement with the theory, being systematically
below the curve by about 15 per cent.

Concerning the 80:20 glycerol-water data, it is ob-
served that many of the points are in close agreement
with the theory but that some are systematically above
the curve by 4050 per cent. All of the latter points are
from [12] and can be discredited on the basis of internal
inconsistency. In particular, all eleven glycerol-water
runs in [12] were obtained with essentially the same
inlet bulk temperature and wall temperature, the only
independent variable being the mass flow rate (m). The
latter was first increased from run 1 to 2, then decreased
from run 2 to 3 and then monotonically increased from
run 3 through 11. Although runs 1-3 are in fair agree-
ment (10-20 per cent) with the theory, the remaining
runs are not. The inconsistency amongst these data
points is seen, e.g. by comparing run 1 (2) with run 7 (10).
Although 7 in the latter run is larger by 6 per cent
(3 per cent), the value of AT, is also larger, and by
30 per cent (35 per cent).

Most of the glycerol data in Fig. 4 is seen to differ
markedly from the theoretical curve. This is to be
expected since these runs were actually forced-flow
dominated, as evidenced in Fig. 3. In fact, Oliver's
objective in using glycerol was merely to check his
apparatus by making comparison with the known
forced-flow theory.

Thedata of Kern and Othmer are seen to be typically
well below the theoretical curve in Fig. 4. In examining
their data, it is to be noted that three different sized
pipes (a = 3-14cm, 1-53cm and 0-79cm) were used in
each of the three oils and that a systematic trend
towards the theory is evidenced with decreasing radius.
(In fact, most of the core-oil and cylinder-oil data in the
smallest pipe are well within 10 per cent of the theory.)
This systematic trend, which is apparently due to a
G-dependent effect, could perhaps be attributable to
the large values ( 108) of GP in the larger pipes and
the resulting possibility of a breakdown in the thermal
boundary layer arising from a thermally unstable
situation at ¢ = 0. In any event, it is clear that this
systematic dependence upon pipe radius is not explain-
able in terms of the present theory.

A more refined comparison with the data can be
obtained by making corrections upon the intermediate-
region theory in order to account for such higher-order
effects as the near-region contribution to AT,/AT and
that of finite P and (GP)'/*. The former effect can be

(3.8)
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represented in terms of an effective increase in pipe
length with the resulting increase in &5 being given by

{see [13]):

Agy = 0-61/(GH*P7'12) (3.9)
if the inlet flow is uniform and G > O(P'/®) or by
Ay ~ 38/(GP)'2 (3.10)

if the inlet flow is fully developed or the inlet flow is
uniform but O(P"') < G < O(P'). Regarding the
effects of a finite P and (GP)** upon the intermediate-
region structure, it is noted that if G > O(P) then the
thermal boundary layer becomes imbedded within a
velocity boundary layer, of order a{P/G)"* in thickness,
and the interaction between the two layers reduces the
¢-averaged heat flux of (2.25) by the multiplicative
factor (see [13]):

(10244 P~ 121 010P 7). (3.11)

I G < O(P), then the thermal boundary layer becomes
imbedded within a viscous core which interacts with the
boundary layer and reduces {2.25) by the factor {see

[13]):

(1-1-10/(GP)'7). (3.12)

For simplicity, it will be assumed that these correction
factors multiply not only the first, but all, of the terms
in (2.44).

A summary of the resulting correlation between data
and theory (based upon first six terms in (244) for
g3 < 1 and upon (3.8) for 1 <&, <25) is given in
Table 2. For comparison, it is noted that the most
recent empirical correlation, in [12], gives agreement
with the data in Table 2 (glycerol omitted) to within
+40 per cent. However, in so doing, much of the
water and ethyl-alcohol data of Oliver lie 20-40 per
cent below the empirical curve while much of the data
of Brown and Thomas lie 20-40 per cent above. In
light of the present investigation, it appears that the
previous empirical correlations have suffered from
seeking order amongst some rather irreconcilable data.

Lastly, according to the present theory. it is noted
that the temperature field outside of the thermal
boundary layer is essentially only z-dependent. Al-
though this can be shown to be a self-consistent
structure (see [13]), the results obtained in investiga-
tions of analogous problems [3, 6, 7, 15] suggest that
thermal stratification may exist outside of the thermal
boundary layer in the present problem also. If so, the
analysis would be much more difficult although the
heat-transfer rates would probably be not much
different (e.g. the approximate solution in [6] for the
stratified case of that problem results in N = 0-471
{(GP)* as compared with 0-435 (GP)V* for the non-
stratified case). From a fundamental point of view,



Mixed convection in an isothermally heated horizontal pipe 1347

Table 2. Comparison of theory and data. Bracketed values in last two columns are based upon higher-order
corrections {the first upon near-region correction, the second upon both)

. . No. of o RMS d t

Fluid Investigators datz :ts‘ avg dev (%) avg F(;))WI'
. heated 10 —-10(—-11) (=-3) 3(3) @
Oliver {cooled 7 -5 (=7 (0 2 (4) 4
water Depew and August 15 -6 (=8 {0) 6 (7Y (N
Brown and Thomas 57 -3 (-4 B 3 (3) (3)
. heated 11 —16{—16)(—12) 33 3
ethyl-alcohol Ofiver {ccoled 7 —9(=10) (=5) & (9) ()
Depew and August 12 11 {—=12) {(-T) 10 (10} (10}
Olive heated 18 11 (-10) (5 12 (6) (5)
80:20 glycerol-water ' °" Jcooled 7 19 (=3) (14 15 () (7)
Depew and August 11 42 (35) @7) 13(12) (12)
. heated 15 59 (—52)(—31) 233027
glycerol Oliver {cooied 4 128(—43)(=10) 14 (1) (®)
a=3l4cm 20 —~4T7(—47)(~46) 10 (10)(10)
transformer oil Kernand Othmer < a = 1-533¢m 15 —-39(-39)(-37) 1anan
a=079cm 16 -32{-32)(-31 3 {3) 4

a=3l4cm 23 —43 (—43)(—42) 10 (10) (10}
core oil Kern and Othmer < a = 1-53cm 18 =27(-28)(-27) 1111y
a=079cm 20 -3 (=6) (=5) 701 ()

a=314cm 11 —45 (—45)(—45) 7 M
cylinder oil Kern and Othmer < a = 1-53cm 11 —32(—-32)(-32) 7 (7 N
a=07%cm 11 =2{(—11)(~-10) 12 (10) (10)

then, it would be highly desirable to make a thorough
and detailed experimental investigation of the present
problem in order to ascertain the presence or absence
of stratification and, further, to determine in what range
of (GP)"/* the laminar flow becomes unstable.
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CONVECTION MIXTE DANS UN TUBE HORIZONTAL ET ISOTHERME

Résumé— Une étude théorique concerne I'écoulement laminaire d’un fluide, a grand nombre de Prandtl,

dans un tube horizontal et chauffé de fagon isotherme. On obtient une solution analytique qui montre,

en premiére approximation, que I'élévation de la température de mélange est seulement une fonction

de (L/aR)(G/P*)!*, La théorie s'accorde bien avec les résultats expérimentaux connus et constitue une
amélioration marquée des expressions empiriques actuelles.

GEMISCHTE KONVEKTION IN EINEM WAAGERECHTEN,
ISOTHERM BEHEIZTEN ROHR

Zusammenfassung — Die laminare Stromung eines Fluids mit hoher Prandtl-Zah} in einem waagerechten,

isotherm beheizten Rohr wird untersucht. Die erhaltene ausfithrliche analytische Losung zeigt, daB mit

guter Naherung der partielle Anstieg der Kerntemperatur allein eine Funktion von (L/aR)(G/P3)'/* ist.

Die Theorie zeigt sehr gute Ubereinstimmung mit verfijgbaren experimentellen Ergebnissen und stellt
eine bemerkenswerte Verbesserung im Vergleich zu vorhandenen empirischen Beziehungen dar.

CMEIWAHHASI KOHBEKLIMS B U3OTEPMHUYECKU HATPEBAEMON
TOPHU3OHTAJIBHON TPYBE

Annoranus — TeopPETHICCKH HCCAEAYETCA TaMUHAPHOE TEMCHHE KHIKOCTH B M30TEPMHYECKH Harpe-

BaeMOi ropHU3OHTANbLHOR TPyDe npu Goablunx yncnax Mpauaras. [MonyyeHHoe HOAPOBHOE AHSIATH-

Yeckoe pelleHHE [OKa3blBaeT B OCHOBHOM IIPHOJIMKEHHH, YTO YBEIHNEHHE OTHOCHTEILHON TeMnepa-

Typbl KHIOKOCTH €CTh TONbko Gynkuus (L/aR)G/P3)'/4. HaiineHo, YTO TEOPETHYECKHE DACYEThI

XOpOLIO COTJIACYIOTCH C MMEIOLUNMHCS 3KCIIEPUMEHTAIBHLIMU PE3Y/IbTATAMH H BHOCAT 3HAYMTENb-
HbIil BKJIaJl B CYLUECTBYIOLUME IMITUPUYECKHE KOPPEITALIUH,



