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Abstract--A theoretical investigation is made into the laminar flow of a large-Prandtl-number fluid 
through an isothermally heated horizontal pipe. A detailed analytical solution is obtained which shows, 
in leading approximation, that the fractional bunk-tem~rature rise is solely a function of (~/a~)(G/P3)“4. 
The theory is found to agree very well with available ex~rimental results and to be a marked improvement 

over existing empirical correiations. 

NOMENCLATURE 

pipe radius; 
gravitational acceleration 
(directed along cp = 0); 

pipe Grashof number, ZE g~AT~3~v~; 
pipe length; 
local Nusselt number, = q,a/(kAT); 

Nusselt number averaged over 4 ; 
Nusselt number averaged over 4 and z; 
pressure; 
PrandtI number; 
local heat flux, = k(dT/dr),,,; 
radial coordinate; 
pipe Reynolds number, z aW,/v; 
average of bulk temperatures at inlet and 
outlet; 
bulk (or “mixing cup”) temperature; 
uniform temperature at inlet; 
wall temperature (uniform); 
radial velocity component ; 
$-component velocity; 
= (v/~}(G/P)“‘; 

axial velocity component; 
uniform inlet velocity (or bulk velocity); 
axial coordinate. 

Greek symbols 

a, = 0.33206; 

PV coefficient of thermal. expansion; 
6, 
6 trlt 

z $6’; 
1;3. 

6 

a”;: 
= aj(GP~14; 
= T,- To; 

bulk-temperature rise; 
= (z/aR)2(G/P1’3); 
E (aR/.z)3’2(P/G3)1/4; 
s (z/a~)(G/P3)1/4; 
= (a - r)/&; 
E [sin113 #/11/4; 
E xp’13; 

= v/W, (“Viscous length”); 
dynamic viscosity; 
kinematic viscosity; 

+ 
_= 

s 
sin*13 tdt; 

0 

fluid density; 
angular (azimuthal) coordinate; 

2 01w/r*o)““4(ATblATlexp; 
22 (a--r)/&; 
streamfunction. 

Subscripts 

a, evaluated at T,; 
B, buoyancy-induct; 

exp, experimental; 
F, forced-flpw-induced; 
W, value at wall. 

1. INTRODUCTION 

THE PRESENT paper is a theoretical investigation of the 
velocity and temperature development in an iso- 
thermally heated horizontal pipe. The analysis corre- 
sponds to the large-Prandtl-number limit of the 
laminar, mixed-convection regime. 

Theoretical investigation of this problem has been 
systematically avoided in the literature due to the 

*Presently, Upson Hall, Cornell University, Ithaca, New 
York 14850, U.S.A. 
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attendant complexities arising from the three-dimen- 
sionality of the flow situation. Instead, all previous 
analyses of the horizontal orientation have been con- 
fined to the fully-developed region of the uniform-heat- 
flux pipe. Notable examples are the perturbation- 
expansion solutions of Morton [I], de1 Casal and Gill 
[2], Mikesell [3] and Faris and Viskanta [4], the 
boundary-layer analyses of Mikesell [3], Mori and 
Futagami [5] and Siegwarth et al. [6], and the 
numerical solutions of Siegwarth and Hanratty [7] and 

Newell and Bergles [8]. Briefly, the perturbation 
expansion results apply to the flow regime in which G 

is sufficiently small such that the natural convection is 
a small perturbation upon the forced-flow situation; at 
the other extreme, the boundary-layer analyses apply to 
the regime in which G is sufficiently large such that the 
structure of the flow is buoyancy-dominated and 
characterized by a thermal boundary layer, of order 

aI’ 1.‘4 in thickness, which surrounds a core region. 

In all instances. the axial dependence of the flow 
variables is degenerate, consisting solely of a linear drop 
in the pressure and a linear rise in the bulk temperature. 

As is shown in the present investigation, the develop- 
ment of the velocity and temperature fields within an 
isothermal horizontal pipe consists of a succession of 
regions, proceeding in the axial direction: a “near 

region”, where buoyancy is a small perturbation upon 

the forced flow; an “intermediate region”, where natural 
convection is dominant and the thermal boundary layer 
is axially invariant, its thickness being of order 

u/(GP)“‘+, as above; a “break-up region”, where the core 

region interacts with the thermal boundary layer as the 
bulk-temperature rise in the core becomes of order AIT 
and the natural-convection effect therefore diminishes; 
a “far-region”, where the forced convection reappears 
as the dominant transport mechanism and the fluid 
temperatureapproaches T, asymptotically in a Graetz- 
like manner. Although the near- and intermediate 
regions can be expected to exhibit similarities to the 
above-mentioned perturbation- and boundary-layer 
analyses, respectively, a significant difference is that 
now. for given inlet conditions, a whole gamut of flow 
regimes exist simultaneously along the pipe. (Of course, 
such a situation also obtains in the uniform-heat-flux 
case for which. however. the previous analyses have 
been concerned only with the final, fully-developed 
region which, as noted above, “degenerates” into the 
Graetz problem in the isothermal-pipe case.) For 
practical purposes, it is the breakup region which is of 
primary interest since it is here that the bulk- 
temperature rise becomes appreciable and, hence, 
where comparison with existing experimental data can 
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fluids. Notable examples are the studies by Kern and 
Othmer [9] in three different oils, Oliver [lo] in water, 
ethyl alcohol, 80:20 glycerollwater and glycerol, 
Brown and Thomas [ll] in water, and Depew and 
August [12] in water, ethyl alcohol and 80:20 glycerol-- 
water. Comparison of these experimental results with 
the present theory is given in Section 3, where the 
fractional rise in bulk temperature is plotted vs 
(L/uR)(G/P~)“~, this latter quantity arising naturally 
from the theory as being the controlling parameter for 

large-P fluids. Agreement between the zeroth-order 
theory (as P + co) and the experimental data in water, 
ethyl alcohol and 80:20 glycerol-water is found to be 
good, the average deviation being approximately 6, 12 
and 15 per cent, respectively. By accounting for higher- 
order effects, the agreement is brought to within about 

3, 8 and 10 per cent, respectively. The glycerol data, 
which is largely forced-flow dominated (as intended by 
Oliver) is still brought to within an average deviation 
of r 20 per cent after higher-order “corrections” (rather 
large in this case) are made. Lastly, the data of Kern 
and Othmer show a systematic dependence upon the 
pipe radius which is not explainable in terms of the 
present theory but which is conjectured as being due to 
thermal instabilities in the larger-sized pipes. In parti- 
cular, the data in the largest-radius pipe shows an 
averagedeviation of about 45 per cent below the theory 
whereas, in the smallest pipe, the average deviation is 
5 10 per cent for two of the three oils. 

A detailed analysis of the problem under considera- 
tion is given in Section 2. This is followed in Section 3 
by a discussion which includes a detailed comparison 
with the above experimental investigations. 

2. ANALYSIS 

The physical situation being investigated is one in 
which a large-Prandtl-number fluid flows through an 
isothermally heated, horizontal pipe of radius a and 
temperature T,,,. At pipe inlet, the fluid has a uniform 

axial velocity profile, w = W,, and temperature, T = &. 
The flow is assumed to remain laminar, thereby re- 

quiring that the pipe Reynolds number, R = W,u/v, be 
5 103. On the other hand, the analysis assumes that the 
unperturbed flow (i.e. with buoyancy omitted) exhibits 
a boundary-layer structure during part of its develop- 
ment, thereby requiring R 2 10’. (The major result of 
the present investigation is not actually subject to this 
latter constraint, as will become clear later.) The usual 
Boussinesq approximation will be employed in hand- 
ling buoyancy effects and viscous dissipation will be 
neglected. 

be made. (a) The near region 
Experimentally, the isothermal horizontal pipe has If natural convection is neglected, it is well-known 

been investigated for various large-Prandtl-number that the velocity field is characterized by a boundary 
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layer surrounding an inviscid core in the region 

0 $ < 2 < O(1). 
( ) 

(2.1) 

In leading approximation, the velocity boundary layer 
is described by Blasius flow over a flat plate: 

I(/F = W,@(X), WF = -F, UF = $ (2.2) 

where F”(0) = 0.33206 = tl. The well-known tempera- 
ture distribution associated with the above flow is 
given by: 

Tr = Te + AT H(K), H(K) = A 
s 

m e-u’3’12 dt (2.3,) 
rl 

where 

A = (9~,‘4)“~/I-(:) = 0.33872. 

Basing the buoyant force upon (2.3), in leading 
approximation, it follows that the limiting equations of 
motion for the buoyancy-induced field in the thermal 
boundary layer are: 

“B I au"-o 
aa ar (2.4) 

~~+~~ATHsin~ = 0 (2.5) 

with the radial force balance being hydrostatic (see 
[133). Hence, this leading buoyancy-induced motion 
can be represented by 

r&r = ~r&Fi(k) sin 4 

V - -+= VBF;(rc)sin& B1 - 

1 

(2.6) 

II sl=~=~~BF,cos~ 

where F1 is governed by 

F;, = -H F$(O) = 0 = F;(O) = F;‘(co). (2.7) 

Numerica integration results in: 

F;‘(O) = l-67115, F;(co) = 2.04010. (2.8) 

In turn, uB1 convects TF, thereby giving rise to TBi 
which can be represented by 

TB1 = cl ATH,@) cos 4 (2.9) 

and is governed by 

H;’ + ; K2& - ZLYKH~ = - Fl H’, 

HI(O) = 0 = H,(m) 

which, upon numerical integration, results in 

H;(O) = -0.21770. 

(2.10) 

(2.11) 

pond-order terms in the buoyancy-induct motion 
evidently arise from T,,. In turn, the resulting thermal 
convection of TF by uBz, and that of TBI by usi and usI, 
induces T,,. In particular, 

I(/az = ~~~r,CfBS~~F~(ti)sin~cos~ 

TB~ = .$AT[HZ1(rc)+sin2 $H22(~)] 1 
(2.12) 

and numerical integration of the governing equations 
for F2, H2, and Hz2 (see [13]) results in: 

F;(O) = -0.90642, F;(co) = -2.08348 

H;,(O) = 0.05575, H;,(O) = -0.28494 1 
(2.13) 

In particular, then, the leading terms in the buoyancy- 
induced heat transfer are given by 

= y (0.2177~~ cos#+~: 
,h 

x [-0.0558+@2849sin2~] +0(&j. (2.14) 

Hence, integrated over 4, the leading contribution is 
O.O867e:kAT/&. 

In order that the above be self-consistent, it is clearly 
required that&, < O(l),i.e. z/uR < O(P’!6/G”2). Hence, 
if G > 0(P’13) it follows that natural convection be- 
comes sig~fi~nt where z/aR -=c O(I) and the above 
expansion is restricted to the region 

O(~).-.&<O(~). (2.15) 

On the other hand, if G < 0(P’/3) then the axial flow 
becomes fully developed at z/aR = 0( 1) with buoyancy 
still being negligible. The subsequent development of 
the thermal boundary layer is then within Poiseuille 
tlow-the Leveque problem, in leading approximation 
-with the natural convection becoming significant 
where z,JaR = 0(P1’4/G3’4). In particular, then, since 
the force-flow-dominated temperature field is known 
to become fully developed (i.e. T, h Tw) where 
z/aR = O(P), it follows that natural convection never 
becomes important if G < O(P-I). 

(b) The intermediate region 
The results in (a) imply that if G > O(P”3) then the 

thermal boundary layer is buoyancy-dominated once 
z/aR > O(P1/6/G1/2). Hence, proceeding in a manner 
similar to that above but now with the forced flow 
assumed negligible, the limiting #-momentum and 
energy equations in the thermal boundary layer 
become: 

d%, 
0 = v--+g~(T~-T~)sin# 

iir2 
(2.16) 

(2.17) 



1340 C. A. HIEBER and S. K. SREENWASAN 

with us again being coupled to vg via the continuity 
equation, (2.4), and the radial force balance again being 
hydrostatic. Appropriate expansions for these buoy- 
ancy-dominated quantities are therefore given by 

with the non-dimensionalized governing equations 
becoming 

3- 

.f+Ksin6=O 
i?<3 

(2.19) 

subject to the conditions: 

&o, 4) = 0 = $0,9), Ml, cb) = 1; 

As was shown by Acrivos [14] for an analogous 
problem, (2.19)-(2.21)can be reduced to similarity form 
(a consequence of P + 03 and the attendant neglect of 
the inertial effect). An appropriate transformation is 
given by 

[Es (b J sin113 t dt, 
sin113 4 

‘I= 
0 r i 

114 (2.22) 

which results in 

j”‘+ h = 0, h”+Q%’ = 0; f(0) = 0 = f’(O), 
h(0) = 1, f”(W) = 0 = h(co). 

(2.23) 

The solution of (2.23) has the following well-known 
properties : 

f”(0) = l-16604, h’(0) = -050275 

f(q) N 1.02136~--0.73825 as q+ co. 
(2.24) 

In particular, the &averaged heat flux is given by 

kAT 
= O-43526 -+(GP)‘? (2.25) 

(c) The near-intermediate region 
The perturbation effect of the forced flow upon the 

structure of(b) arises from u&T&r) with the limiting 

$-momentum and energy equations being 

i;2VF, 
o=v----- fr2 +SPTFI sin4 (2.26) 

( 

a a 
! ! 

d 2 a 
u,--+M,~~ TFI+ vFl--+I+-+uFz 

aa a&$ Sr > 
T, 

v 8T 
= - 2. (2.27) 

P ar2 

If UP is based upon Blasius flow, (2.2), then an appro- 
priate representation of these first-order perturbation 
quantities is given by 

$F, = s~I!&@iI(~rr#~), Gi = sN’&(ir@ 

a& 
VFl=&2vBa;' 

Be a& 
@Fl =E2v~--- 

a ad, ~ 

(2.28) 

where Ed, which equals E; 314, represents the ratio of ur 
to I.+, in the thermal boundary layer of the present 
region. The resulting governing equations are 

a3& 
---++isin~=O 
ai 

(2.29) 

a5~@~ aj%& ifa& s,@~ ah a_& aR -+_____--_--f__ 
P 4 84 ai ai a4 85 ad, a4 ai 

= ;('$ (2.30) 

I 

@i(O, (n) = 0 = C$ (0, 4) = & (0, $J) 

a%$ 
=~iw#l=.&(co,4). (2.31) 

Due to the form of the inhomogeneous forcing term 
on the r.h.s. of (2.30), a similarity solution for @i and 
S& is precluded. Hence, a Blasius-series solution is 
appropriate and, since f^ and fi are most simply 
described in terms of rl and r, the series will be taken in 
‘1 and < rather than [ and C#J. That is, 

= “ZO r3”‘2=%.(1). 
~ 

(2.32) 

& (i, cb) = %(e, 5) 

Substitution into (2.29)-(2.30) and collection of terms in 
like powers of 5 results in (with b 3 (3/4)3’4): 

WO): 
F:c;+&o = 0 

~~o+~~~+~~~~~ = $E$h 
~ 

(2.33) 
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with the process continuing to all integral powers of 

t3”. For all n > 0, the associated boundary conditions 
are: 

1341 

In particular, the limiting governing equations and 

boundary conditions on u, v and T are the same as in 

(b) provided “T,” is everywhere replaced by “Tb”. Hence, 
appropriate expansions in this far-intermediate region 

are given by: 
91”(O) = 0 = F;;,(o) = ~~“(0) 

= F{“(oo) = ,“F”l,(co). (2.35) 

Numerical integration gives: 

F;e(O) = 0.081096, Xi’O(0) = 0.029579, 
F;t;o(cc) = 0.133333 

$‘i (0) = 0.0072809, Xi’t (0) = 00023300, 
Y;r(co) = 0.014230. 

(2.36) 

Hence, in particular, the perturbation effect of the 
forced flow in this region is to decrease the heat transfer. 

Due to the non-linear thermal-convection effect, it is 
clear that the interaction between @i and ~?i gives rise 
to smaller-order terms, of O(E$), and that, in fact, there 
exists an infinite series in powers of ez. In particular, it 

is found that (see [13]): 

P&(O) = 0.033405, Z&(O) = 0.0083467, 
&&co) = 0.073348 

P&(O) = 0.0036312, &‘;i(O) = 0.00045047, 

1 

(2.37) 

P;i (co) = 00092663. 

(d) The far-intermediate region 
It is apparent that the axially-invariant structure of 

the intermediate region cannot be sustained indefinitely 
since eventually the rise in the bulk temperature must 

become significant and interact with the thermal 
boundary layer. In particular, a global energy-rate 
balance based upon the intermediate-region structure 
gives 

pxa’ W,c, z - 27ra!i F 
B 

from which it follows that ATb becomes of O(AT) where 

(2.38) 

That is, once z satisfies (2.38), the thermal boundary 
layer is effectively developing within a z-dependent 
external temperature field and, hence, must itself be 
z-dependent. Therefore, the theory in (b) is restricted to 
the region 

O(~)<~<O(~). (2.39) 

A means of analyzing the effect of the bulk-tempera- 
ture rise upon the thermal boundary layer is by forming 
a perturbation expansion based upon the quantity 

” /111/4\ 

(2.40) 

ti = v,sBP~0e;6(1) 

(T-T,) = AT f &h.(q) 
n=O 1 

(2.41) 

where f. and ho are the same as f and h of (b). 

Substitution of (2.41) into the limiting governing 
equations and collection of terms in like powers of &3 

results in (71 2 0): 

J,“‘+h, = 0; h:;+ f: fn_th; = 0 (2.42) 
k=O 

subject to the four homogeneous boundary conditions, 

fn(0) = 0 = f;(O) = f;(co) = h,(a) (2.43) 

and a fifth condition, on h,(O), which is obtained 
immediately below. 

From the definition of Tbr it follows that 

Hence, evaluating this integral on the basis of (2.41) 
(i.e. neglecting the bulk-temperature rise of the near 
region-an assumption which will be corrected for, 

approximately, in Section 3) it follows that 

where 

T,-To = AT f C.E; (2.44) 
n=, 

C = _2h:_,(O) “sin1134 
n 

s 
o <l/4 a. (2.45) 

n n 

Therefore, since the isothermal wall condition requires 
that 

T,-T, = AT f $hn(Q) 
n=o 

(2.46) 

it follows from (2.44) and (2.46) that 

h,(O) = 1, h,(O) = -C,, (n 2 1). (2.47) 

Since C. is known once h,_ I has been determined, it 
follows that the h, can be obtained successively. In 
particular, numerical integration of (2.42) subject to 
(2.43) and (2.47) results in the following values for 
n = 0 through 5: 

f;‘(O) = 1.16604, -0.76130, 0.33136, 
-0.12019, 0.03924, -0.01195 

h;(O) = -0.50275, 0.54706, -0.35717, 
0.18 137, - 0.07894, 0.03093 

(2.48) 
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with the associated values of C, for ~1 = I through 6 
given by: 

C, = 0.87052, -0.47363, 020615, 
- 0@7851, 0.02734, -000892. (2.49) 

(e) The far wggion 
Since the buoyant effect is proportional to the 

temperature variation within the fluid, it is clear that the 
natural convection must diminish as (T,-- T,)/AT 
becomes small. Hence, the forced convection must 
eventually reappear as the dominant transport mech- 
anism with the final asymptotic development of the 
temperature field corresponding to that of the Graetz 
problem. 

That is, as z/(&7) becomes of O(P). (TX,-- ‘&,)/AT 
approaches zero exponentially fast as A, e-zlz/(aRP) 
where rl = 3.657 is the first eigenvatue from the Graetz 
problem and AI is a constant whose value would be 
extremely difficult to determine, being dependent upon 
the far-intermediate region and subsequent develop 
ment, Qualitatively, however, since the natural con- 
vection effectively annihilates itself where z/(aR) = 
0(P3’4jG”4). it follows that the forced convection 
should be significant in the region 

(2.50) 

becoming the dominant (howbeit, weak) transport 
mechanism towards the latter part of this region. Since 
(GP)1”4 appears as the ratio of the upper to lower bound 
in (2SO), it seems reasonable to expect that Al will be 
mainly a function of (GP)"'-(I monotonically de- 
creasing function, at that (as is clear on a physical basis). 

Since a detailed solution for this region would be 
extremely complicated, it is indeed fortunate that such 
a solution may be omitted without much loss since 
(TX,- &)/AT is uniformly small throughout this region. 
That is, as far as the heat transfer is concerned, main 
interest lies in determi~ng where (T,- T,)/AT first 
becomes small, which corresponds identicaIIy with 
where the natural convection destroys itself, namely in 
the far-intermediate region. 

3. DlSCUSSION 

Based upon the previous section it follows that if 
G > 0(P3) and the inlet velocity is uniform then the 
local (in 5, and z) Nusselt number in the near region, 
(2. IS), is given by 

N= p3 $ 

c > 

-Ii2 [0~3387+s,(@2177cos#f 

~s~(-O~OS5S+~2849sinz~)+O(~~)] (3.1) 

whereas, in the intermediate region, {2.39), 

iv = (GP)“4 sin”JF CO.5027 + Al + A,] (3.2) 
5 

where Al is the near-intermediate-re~on cont~bution, 

AL = s2{ -O~02958-0.002330<312 +O(t3)) +E: 

x i -0.008347-O@OO4505 <3’2 +O(c’)j +U(E;) 1 
13.3) 

and AZ that of the far-inte~ediate: 

+0~07894&f:-0~0309&;l”O(&Q). (3.4) 

These results are illustrated in Fig. 1 at # = 0” and 
G = 104, P = lo2 and R = 40% Curves 0.1, and 2 are 
based upon the near-region theory, (3.1), with “0’ 
denoting the purely forced-flow result; curve 0’ is the 
zeroth-order result of the intermediate-region theory; 
(3.2), with 1’ and 2’ corresponding to the retention of one 
and two terms in Ai. The final sloping down of the 
curve for large z/a is due to AZ. It is seen that the 
curves based upon (3.1) and (3.2) merge very well with 
each other, the solid curve being the composite result 
based upon graphical interpolation between the two. A 
local minimum in N is apparent. 

Averaged over 4. the above reduce to: 

. 

i > 

-ii2 
&i = pm 2_ 

flR 
CO.3387 +O.O867c:+O(s:)] (3.5) 

and 

19 = (GP)“‘[O*4353 -0.0287 cz--0+0078 E; 

+0(&+@8657AJ* (3.6) 

These results are illustrated in Fig. 2 where iV vs z/a 
has been plotted for P = 102, R = 400 and G = IO’, 
104, 10’. Curve A is based upon the first term in (3.5) 
and curves B upon the first in (3.6); also shown is the 
O(c2) contribution from the near region and the con- 
tribution, to O(s$, of the near-intermediate; curves (ii) 
and (iii) are based upon the retention of two and three 
terms in AZ, respectively. As above, the curves are seen 
to merge well, the solid curve being the composite 
result based upon graphica interpolation. 

Since main interest lies in deter~ning the bulk- 
temperature rise of the fluid, it would be desirable to 
integrate the above result over z in order to obtain the 
average Nusselt number for the entire pipe, fl, which is 
reIated to AT, by: 

(3.7) 

However, such a procedure would be complicated by 
the necessity of obtaining an analytic expression for fl 
in the “interpolated” region in which neither (3.5) nor 
(3.6) is applicable. Rather, the procedure below will be 
to compare available data directly with the theory of the 
far-intermediate region, since it is here that A&/AT 
first becomes appreciable. Higher-order corrections 
will then be made upon the far-intermediate theory. 
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I 2 4 10 20 40 100 

z/a 

FE. 1. Variation of local Nusselt number with z/a at d = 0 and G = 104, P = 102. 
R=400. 

I IO IO' IO* IO' 

r/a 

FE. 2. Variation of #-averaged Nussett number with z/a for P = 102, R = 400 and 
G = 103, IOJ, 10’. (iiB3” corresponds to G = 105.) 

MT Vol. 17. No. 11-E 
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0.6 

P 

0.4 

FIG. 3. Q, vs L/(aRP). + : water (Oliver, D&A, B&T); A: ethyl alcohol 
(Oliver, D&A); 0 : 80:20 glycerol-water (Oliver, D&A); 0: glycerol (Oliver); 
4: transformer oil (K&O); D: core oil (K&O); 0: cylinder oil (K&O). 

Curve corresponds to Graetz solution. 

,++ 
’ ++ 0+ 

a 

a 

$1 
I I I 

0.2 09 I ’ 2 4 

FIG. 4. Q, vs Ed (evaluated at z = L). Symbols have same meaning as in 
Fig. 3. Solid curve based upon first six terms of (2.44). 

The only pertinent experimental investigations ap- A&/AT is multiplied by the above viscosity-ratio 
pear to have been those of Kern and Othmer [9], factor.] The indicated curve in Fig. 3 corresponds to 
Oliver [lo], Brown and Thomas [11] and Depew and the Graetz solution. Clearly, with the exception of the 
August [12]. For reference purposes, the operating glycerol and some of the 80:20 glycerol-water results, 
ranges of these experiments are indicated in Table 1. the data is systematically well above the forced-flow 
Every fourth data point of these investigations is shown theory, suggesting the presence of an additional trans- 
in Fig. 3 in terms of port mechanism. 

vs L/(&P). [A standard procedure has been employed 
in Figs. 3-4 whereby all fluid properties are evaluated 
at the average bulk teniperature, T,, and the measured 

On the basis of the present theory, @ has been 
plotted vs sj (with z = L) in Fig. 4, wherein the solid 
curve is based upon the first six terms in (2.44). It is seen 
that all the water data (based upon three separate 
investigations) correlate very well with cj and are in 
good agreement with the solid curve. On the basis of the 
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trend in this water data, the theoretical curve has been 
extrapolated (dashed) and can be represented by 

@ = 0.543+0.315(~,- l)-0.132(e3- 1)’ 

+0,028(&, - 1)3. (3.8) 

for 1 < Ed < 2.5. The ethyl-alcohol data are also seen 
to correlate very well with .sa although they are only in 

fair agreement with the theory, being systematically 

below the curve by about 15 per cent. 
Concerning the 8O:ZO glycerol-water data, it is ob- 

served that many of the points are in close agreement 
with the theory but that some are systematically above 
the curve by 40-50 per cent. All of the latter points are 

from [12] and can be discredited on the basis of internal 
inconsistency. In particular, all eleven glycerol-water 
runs in [12] were obtained with essentially the same 

inlet bulk temperature and wall temperature, the only 
independent variable being the mass flow rate (ti). The 
latter was first increased from run 1 to 2, then decreased 
from run 2 to 3 and then monoto~cally increased from 
run 3 through 11. Although runs 1-3 are in fair agree- 
ment (LO-20 per cent) with the theory, the rem~ning 
runs are not. The inconsistency amongst these data 
pointsisseen, e.g. bycomparingrun l(2) with run 7 (10). 
Although ti in the latter run is larger by 6 per cent 

(3 per cent), the value of AT,, is also larger, and by 
30 per cent (35 per cent). 

Most of the glycerol data in Fig. 4 is seen to differ 
markedly from the theoretical curve. This is to be 
expected since these runs were actually forced-flow 

dominated, as evidenced in Fig. 3. In fact, Oliver’s 
objective in using glycerol was merely to check his 
apparatus by making comparison with the known 

forced-how theory. 

The data of Kern and Othmer are seen to be typically 
well below the theoretical curve in Fig. 4. In examining 
their data. it is to be noted that three different sized 
pipes (a = 3.14cm, 153 cm and 0.79cm) were used in 
each of the three oils and that a systematic trend 
towards the theory is evidenced with decreasing radius. 

(In fact, most of the core-oil and cylinder-oil data in the 
smallest pipe are well within 10 per cent of the theory.) 
This systematic trend, which is apparently due to a 
G-dependent effect, could perhaps be attributable to 
the large values ( z lo*) of GP in the larger pipes and 
the resulting possibility of a breakdown in the thermal 
boundary layer arising from a thermally unstable 
situation at 4 = 0. In any event, it is clear that this 
systematic dependence upon pipe radius is not explain- 
able in terms of the present theory. 

A more refined comparison with the data can be 
obtained by making corrections upon the intermediate- 
region theory in order to account for such higher-order 
effects as the near-region contribution to ATJAT and 
that of finite P and (GP)‘j4. The former effect can be 

represented in terms of an effective increase in pipe 
length with the resulting increase in a3 being given by 

(see [ 131): 

Ac3 w 0~61/(G1’4P7!1 2, (3.9) 

if the inlet flow is uniform and G > 0(P’13) or by 

As9 = 3%/(GP)“’ (3,iO) 

if the inlet flow is fully developed or the inlet flow is 
uniform but O(P‘“‘) < G < 0(P1!3). Regarding the 
effects of a finite P and (GP)“” upon the intermediate- 

region structure, it is noted that if G > O(P) then the 
thermal boundary layer becomes imbedded within a 
velocity boundary layer, of order u(P/G)‘!~ in thickness, 
and the interaction between the two layers reduces the 

&averaged heat flux of (2.25) by the multiplicative 

factor (see [13]): 

(1-0~244P-‘:‘+o.IoP~‘). (XII) 

If G -=z O(P), then the thermal boundary layer becomes 
imbedded within a viscous core which interacts with the 
boundary layer and reduces (2.25) by the factor (see 

c 133): 

(I- 1~10/(GP)“2). (3.12) 

For simplicity, it will be assumed that these correction 
factors multiply not only the first, but all, of the terms 

in (2.44). 
A summary of the resulting correlation between data 

and theory (based upon first six terms in (2.44) for 
sj < 1 and upon j3.8) For 1 < s3 ,< 2.5) is given in 
Table 2. For comparison, it is noted that the most 

recent empirical correlation, in [12], gives agreement 
with the data in Table 2 (glycerol omitted) to within 

+40 per cent. However, in so doing, much of the 
water and ethyl-alcohol data of Oliver lie 20-40 per 

cent below the empirical curve while much of the data 
of Brown and Thomas lie 20-40 per cent above. In 
light of the present investigation, it appears that the 
previous empirical correlations have suffered from 

seeking order amongst some rather irreconcilable data. 
Lastly, according to the present theory. it is noted 

that the temperature field outside of the thermal 
boundary layer is essentially only z-dependent. Al- 
though this can be shown to be a self-consistent 
structure (see [13]), the results obtained in investiga- 
tions of analogous problems [3, 6, 7, 151 suggest that 
thermal stratification may exist outside of the thermal 
boundary layer in the present problem also. If so. the 
analysis would be much more difficult although the 
heat-transfer rates would probably be not much 
different (e.g. the approximate solution in [4] for the 
stratified case of that problem results in i? = 0.471 
(GP)“’ as compared with 0.435 <GP)‘!4 for the non- 
stratified case). From a fundamental point of view. 
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Table 2. Comparison of theory and data. Bracketed values in last two columns are based upon higher-order 
corrections (the first upon near-region correction, the second upon both) 

Fluid Investigators 
No. of 

data pts. avg dev (%) 
RMS dev wrt 

avg (%) 

Oliver heated 
cooled 

water Depew and August 
Brown and Thomas 

ethyl-alcohol 

Depew and August 

Oliver 
heated 

80:20 glycerol-water cooled 

Depew and August 

glycerol 

- 
10 -10 -11) (-3) 
7 -5 (-7) (0) 

15 -6 (-8) (0) 
57 -3 (-4) (5) 

11 -16 -I@(-12) 
7 -9 -10) (-5) 

12 

18 11 (-10) (5) 
7 19 (-3) (14) 

11 42 (35) (47) 

15 59(-52)(-31) 
4 128 (-43) (- 10) 

transformer oil 
a = 3.14 cm 

Kern and Othmer a = 1.53 cm 
a =@79cm 

core oil 

cylinder oil 

i 

a = 3.14cm 
Kern and Othmer a = 1.53 cm 

a = 0.79 cm 

a = 3.14cm 
Kern and Othmer a = 1.53 cm 

a = 0.79 cm 

20 -47(-47)(-46) 
15 -39(-39)(-37) 
16 -32(-32)(-31) 

23 -43(-43)(-42) 
18 -27 (-28)(-27) 
20 -3 (-6) (-5) 

11 -45(-45)(-45) 
11 -32(-32)(-32) 
11 -2(-ll)(-10) 

-ll(-12) (-7) 

3 (3) (4) 
2 (4) (4) 

6 (7) (7) 
3 (3) (3) 

3 13) (3) 
8 (9) (9) 

10 (10) (IO) 

12 (6) (5) 
15 (7) (7) 

13 (12) (12) 

23 (31) (27) 
14 (7) (8) 

10 (10) (10) 
11(11)(11) 
3 (3) (4) 

10 (10) (10) 
11 (ll)(ll) 
7 (7) (7) 

7 (7) (7) 
7 (7) (7) 

12 (10) (10) 

then, it would be highly desirable to make a thorough 
and detailed experimental investigation of the present 
problem in order to ascertain the presence or absence 
of stratification and, further, to determine in what range 
of (GP)1’4 the laminar flow becomes unstable. 
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CONVECTION MIXTE DANS UN TUBE HORIZONTAL ET ISOTHERME 

R&me-Une etude theorique concerne l’ecoulement laminaire d’un fluide, a grand nombre de Prandtl, 
dans un tube horizontal et chauffe de facon isotherme. On obtient une solution analytique qui montre. 
en premiere approximation, que I’elevation de la temperature de melange est seulement une fonction 
de (L/aR)(G/P3)““. La theorie s’accorde bien avec les r&hats experimentaux connus et constitue une 

amelioration marquee des expressions empiriques actuelles. 

GEMISCHTE KONVEKTION IN EINEM WAAGERECHTEN, 
ISOTHERM BEHEIZTEN ROHR 

Zusammenfassung-Die laminare Stromung eines Fluids mit hoher Prandtl-Zahl in einem waagerechten, 
isotherm beheizten Rohr wird untersucht. Die erhaltene ausftrliche analytische Losung zeigt, dab mit 
guter Nlherung der partielle Anstieg der Kerntemperatur allein eine Funktion von (L/cIR)(C/P~)'~~ ist. 
Die Theorie zeigt sehr gute Ubereinstimmung mit verfiigbaren experimentellen Ergebnissen und stellt 

eine bemerkenswerte Verbesserung im Vergleich zu vorhandenen empirischen Beziehungen dar. 

CMEUIAHHAII KOHBEKHMII B M30TEPMMHECKM HAFPEBAEMOH 
FOPM30HTAJIbHOfi TPYEE 

Am#oTaqHsr-- TeopeTsYecKli HccnenyeTcR naMHHapHoe TeYeHrte XGUKOCTLI B H30TepMAYeCKW Harpe- 

BaeMOii~OPH30HTanbHOiiTpy6eIlpH6onbUIHxYlrCnaX ~paHilTnff.~OnyYeHHOe~o~po6HoeaHsnHTH- 

YecKoe pewewe noKa3blBaeT B OCHOBHOM npa6nn~eHw,rro yeenwieti~eoTHocwrenbwoii Tehmepa- 

Typbr XW~~~KOCT)I ecTb TonbKo $y~Kuki51 (L/aR)(G/P3)"'. Haiineno, YT0 reoperayecmie pacYeTb1 

XOpOIlIO COrJlaCylOTCSi C )IMe,OLW4MMCfl Z'KCIlepLiMeHTanbHblMH pe3ynbTaTaMH H BHOCRT 3HaYBTenb- 

HbIfi BKnan BCylQeCTByIOIlVie3MIIlipHYeCKMe KOppennuHH. 


